CVM UNIVERSITY ## M.Sc.(Organic Chemistry) – SEMESTER 1 EXAMINATION 2021 Monday, 22nd February 2021 Time: 10:00 AM to 12:00 PM 101330101: Electron spectroscopy & Magnetochemistry | | | Maximum Marks: | 60 | |-------------|-----------|--|-----| | NOTE: (1) A | | | | | (2) Fi | igures to | the right indicate marks | | | Que. 1[A] | Choo | ose correct answer of the following questions. | 08 | | C[] | | Which of the following orbital is most stabilized in square planner Pt(II) complex? | | | | | (A) d_{xz} (B) $d_x^2 - y^2$ | | | | | (A) d_{xz} (B) $d_x^2 - y^2$ (C) d_{xy} (D) d_z^2 | | | | 2. | On the basis of molecular orbital theory, the number of electrons in non-bonding | | | | | molecular orbital in $[CoF_6]^{-3}$ complex is | | | | | (A) Six (B) Three | | | | | (C) Two (D) Four | | | | 3. | Which of the following systems has similar orgel diagram? | | | | - | (A) Cr^{+2} and Co^{+2} (B) Cu^{+2} and Co^{+3} | | | | | (A) Cr^{+2} and Co^{+2} (B) Cu^{+2} and Co^{+3} (C) Ti^{+2} and Co^{+2} (D) Ti^{+2} and Ni^{+2} | | | | 4. | For free ion with d ⁶ configuration, the ground state is | | | | | (A) ⁵ D (B) ³ F | | | | | (C) ^{3}D (D) ^{5}F | | | | 5. | The effective magnetic moment value of [Ni(H ₂ O)] ⁺² is | | | | | (A) 1.73 B.M. (B) 3.87 B.M. | | | | | (C) 0 B.M. (D) 2.83 B.M. | | | | 6. | Which of the following compound is paramagnetic? | | | | | (A) $[Ni(CN)_6]^{-2}$ (B) $[Ni(DMG)_2]$ | | | | | (A) $[Ni(CN)_6]^{-2}$ (B) $[Ni(DMG)_2]$ (C) $K_4[Fe(CN)_6]$ (D) $[Fe(H_2O)_6]^{+2}$ | | | | 7. | For the Octahedral law spin complex, which one has the orbital contribution is | | | | MAGE . | expected? | | | | | (A) $(t_2g)^3(e_g)^0$ (B) $(t_2g)^6(e_g)^0$ | | | | | (A) $(t_2g)^3(e_g)^0$ (B) $(t_2g)^6(e_g)^0$ (C) $(t_2g)^6(e_g)^2$ (D) $(t_2g)^1(e_g)^0$ | | | | 8. | According to Lande's interval rule, energy difference (ΔE) between the successive | | | | • | J level is | | | | | (A) $\lambda(J+2)$ (B) $\lambda(J+2)/2$ | | | | | (C) $\lambda(J+1)$ (D) $\lambda(J+1)/2$ | | | | | (C) N(3+1)/2 | | | | | | 0.0 | | Que. 1[B] | | wer the following. (Fill in the blanks and True or False) | 08 | | | 1. | Pairing energy means energy need to pair up the electron. True or False? | | | * | 2. | The number of microstate for the ⁴ G are | | | | 3. | Total number of microstates of $(t_2g)^1(e_g)^T$ are (24, 36, 44) | | | | 4. | In orgel diagram of d ² -cofiguration considerable terms are (³ P & ³ F, ¹ S & ¹ G, ³ P & ¹ F) | | | | 5. | Π-interaction more effective in oxobridge complex than hydroxo bridge complex. | | | | | True or False? | | | | 6. | Paramagnetism is property of substance containing electron. (paired, | | | | | unpaired) | | | | 7. | When t ₂ g orbital is not half-filled or fulfilled then orbital contribution is | | | | | (expected, not expected) | | | | Q | Actinides are stronger in color due to spin-orbit coupling. True or False? | | | Que. 2 | Answer ANY SIX of the following. Give the term symbol of V⁺² and Co⁺². Explain amount of octahedral splitting is greater than tetrahedral splitting. Give the total microstate for (t₂g)²(e_g)² & (e_g)³. Draw the orgel diagram for octahedral d⁶ configuration. Derive the equation for spin magnetic moment which is source of paramagnetism. Explain the volume susceptibility & molar susceptibility. Calculate diamagnetic susceptibility for pyridine.(Given: χ_A for C= -6.0×10⁻⁶ cgs, H=-2.93×10⁻⁶ cgs, N_{ring}=-4.61×10⁻⁶ cgs, The value of constitutive correction λ for C =-0.24×10⁻⁶ cgs) What is important characteristic of Holmium(III)? Why? | 12 | | |--------|---|----|--| | Que. 3 | Give the derivation of term symbol for D ² configuration. | | | | Que. 3 | OR Explain the splitting of d-orbital in trigonal prismatic complex, square pyramidal | 08 | | | Que. 3 | complex, Trigonal bipyramidal geometry. | | | | Que. 4 | Explain & draw the Tanabe-Sugano diagram for d^2 system <u>AND</u> calculate the value electronic parameters 10Dq, % β , β , % Ionic character and % of covalent character for $[V(H_2O)_6]^{+2}$ complex. [Given: v_1 =18600 cm ⁻¹ , v_2 =22000 cm ⁻¹ , v_3 =24500 cm ⁻¹ , v_4 =25150 cm ⁻¹ , P_0 for Mn(II)= 860 cm ⁻¹] | | | | Que. 4 | Give the crystal field terms for ¹ S, ³ P, ¹ D, ³ F, ¹ G, ³ H, ¹ I and arrange them in decreasing order of energy. Calculate the number of microstate and energy of strong field of d ² -system. Explain the non-crossing and one to one correspondence rules giving appropriate examples. | | | | Que. 5 | Derive the Langevin equation for multiple width larger than thermal energy. OR | | | | Que. 5 | What is first order & Second order Zeeman effect? Derive the Van-vleck equation for the magnetic susceptibility of the coordination compounds. | | | | Que. 6 | Explain the spin-orbit coupling on A and E terms. Determine the effect of spin-orbit coupling on effective magnetic moment value of $[Ni(H_2O)_6]^{+2}$ complex. (Given: λ = -351 cm ⁻¹ , $10Dq = 9000$ cm ⁻¹) | | | | Que. 6 | Derive the L, S, J, g, μ_{eff} , and term symbol for the Nd(III) (Z= 60), Eu(III) (Z= 63), Ho(III) (Z= 67), Er(III) (Z= 68), Tm(III) (Z= 69), Yb(III) (Z= 70) <u>AND</u> discuss the spectra of Lanthanide complex. | 08 | |