CVM UNIVERSITY

M.Sc.(Organic Chemistry) – SEMESTER 1 EXAMINATION 2021 Monday, 22nd February 2021 Time: 10:00 AM to 12:00 PM

101330101: Electron spectroscopy & Magnetochemistry

		Maximum Marks:	60
NOTE: (1) A			
(2) Fi	igures to	the right indicate marks	
Que. 1[A]	Choo	ose correct answer of the following questions.	08
C[]		Which of the following orbital is most stabilized in square planner Pt(II) complex?	
		(A) d_{xz} (B) $d_x^2 - y^2$	
		(A) d_{xz} (B) $d_x^2 - y^2$ (C) d_{xy} (D) d_z^2	
	2.	On the basis of molecular orbital theory, the number of electrons in non-bonding	
		molecular orbital in $[CoF_6]^{-3}$ complex is	
		(A) Six (B) Three	
		(C) Two (D) Four	
	3.	Which of the following systems has similar orgel diagram?	
	-	(A) Cr^{+2} and Co^{+2} (B) Cu^{+2} and Co^{+3}	
		(A) Cr^{+2} and Co^{+2} (B) Cu^{+2} and Co^{+3} (C) Ti^{+2} and Co^{+2} (D) Ti^{+2} and Ni^{+2}	
	4.	For free ion with d ⁶ configuration, the ground state is	
		(A) ⁵ D (B) ³ F	
		(C) ^{3}D (D) ^{5}F	
	5.	The effective magnetic moment value of [Ni(H ₂ O)] ⁺² is	
		(A) 1.73 B.M. (B) 3.87 B.M.	
		(C) 0 B.M. (D) 2.83 B.M.	
	6.	Which of the following compound is paramagnetic?	
		(A) $[Ni(CN)_6]^{-2}$ (B) $[Ni(DMG)_2]$	
		(A) $[Ni(CN)_6]^{-2}$ (B) $[Ni(DMG)_2]$ (C) $K_4[Fe(CN)_6]$ (D) $[Fe(H_2O)_6]^{+2}$	
	7.	For the Octahedral law spin complex, which one has the orbital contribution is	
	MAGE .	expected?	
		(A) $(t_2g)^3(e_g)^0$ (B) $(t_2g)^6(e_g)^0$	
		(A) $(t_2g)^3(e_g)^0$ (B) $(t_2g)^6(e_g)^0$ (C) $(t_2g)^6(e_g)^2$ (D) $(t_2g)^1(e_g)^0$	
	8.	According to Lande's interval rule, energy difference (ΔE) between the successive	
	•	J level is	
		(A) $\lambda(J+2)$ (B) $\lambda(J+2)/2$	
		(C) $\lambda(J+1)$ (D) $\lambda(J+1)/2$	
		(C) N(3+1)/2	
			0.0
Que. 1[B]		wer the following. (Fill in the blanks and True or False)	08
	1.	Pairing energy means energy need to pair up the electron. True or False?	
*	2.	The number of microstate for the ⁴ G are	
	3.	Total number of microstates of $(t_2g)^1(e_g)^T$ are (24, 36, 44)	
	4.	In orgel diagram of d ² -cofiguration considerable terms are (³ P & ³ F, ¹ S & ¹ G, ³ P & ¹ F)	
	5.	Π-interaction more effective in oxobridge complex than hydroxo bridge complex.	
		True or False?	
	6.	Paramagnetism is property of substance containing electron. (paired,	
		unpaired)	
	7.	When t ₂ g orbital is not half-filled or fulfilled then orbital contribution is	
		(expected, not expected)	
	Q	Actinides are stronger in color due to spin-orbit coupling. True or False?	

Que. 2	 Answer ANY SIX of the following. Give the term symbol of V⁺² and Co⁺². Explain amount of octahedral splitting is greater than tetrahedral splitting. Give the total microstate for (t₂g)²(e_g)² & (e_g)³. Draw the orgel diagram for octahedral d⁶ configuration. Derive the equation for spin magnetic moment which is source of paramagnetism. Explain the volume susceptibility & molar susceptibility. Calculate diamagnetic susceptibility for pyridine.(Given: χ_A for C= -6.0×10⁻⁶ cgs, H=-2.93×10⁻⁶ cgs, N_{ring}=-4.61×10⁻⁶ cgs, The value of constitutive correction λ for C =-0.24×10⁻⁶ cgs) What is important characteristic of Holmium(III)? Why? 	12	
Que. 3	Give the derivation of term symbol for D ² configuration.		
Que. 3	OR Explain the splitting of d-orbital in trigonal prismatic complex, square pyramidal	08	
Que. 3	complex, Trigonal bipyramidal geometry.		
Que. 4	Explain & draw the Tanabe-Sugano diagram for d^2 system <u>AND</u> calculate the value electronic parameters 10Dq, % β , β , % Ionic character and % of covalent character for $[V(H_2O)_6]^{+2}$ complex. [Given: v_1 =18600 cm ⁻¹ , v_2 =22000 cm ⁻¹ , v_3 =24500 cm ⁻¹ , v_4 =25150 cm ⁻¹ , P_0 for Mn(II)= 860 cm ⁻¹]		
Que. 4	Give the crystal field terms for ¹ S, ³ P, ¹ D, ³ F, ¹ G, ³ H, ¹ I and arrange them in decreasing order of energy. Calculate the number of microstate and energy of strong field of d ² -system. Explain the non-crossing and one to one correspondence rules giving appropriate examples.		
Que. 5	Derive the Langevin equation for multiple width larger than thermal energy. OR		
Que. 5	What is first order & Second order Zeeman effect? Derive the Van-vleck equation for the magnetic susceptibility of the coordination compounds.		
Que. 6	Explain the spin-orbit coupling on A and E terms. Determine the effect of spin-orbit coupling on effective magnetic moment value of $[Ni(H_2O)_6]^{+2}$ complex. (Given: λ = -351 cm ⁻¹ , $10Dq = 9000$ cm ⁻¹)		
Que. 6	Derive the L, S, J, g, μ_{eff} , and term symbol for the Nd(III) (Z= 60), Eu(III) (Z= 63), Ho(III) (Z= 67), Er(III) (Z= 68), Tm(III) (Z= 69), Yb(III) (Z= 70) <u>AND</u> discuss the spectra of Lanthanide complex.	08	